If it's not what You are looking for type in the equation solver your own equation and let us solve it.
168x^2=49
We move all terms to the left:
168x^2-(49)=0
a = 168; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·168·(-49)
Δ = 32928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32928}=\sqrt{784*42}=\sqrt{784}*\sqrt{42}=28\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{42}}{2*168}=\frac{0-28\sqrt{42}}{336} =-\frac{28\sqrt{42}}{336} =-\frac{\sqrt{42}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{42}}{2*168}=\frac{0+28\sqrt{42}}{336} =\frac{28\sqrt{42}}{336} =\frac{\sqrt{42}}{12} $
| 2x^2=267 | | 10y-7=43 | | -3n+10=1 | | 10-3x7=31 | | 5w+28=11w-44 | | -17(z-930)=-459 | | 5x+10=4(5-4x) | | -0.6x-5=6 | | 4(t-3)=16 | | 3a+25=58 | | 7b+20-16=40+b | | 169x^2=49 | | x/4-2=28 | | 7b+20-16=2(20)+b | | 12.5=0.25*6+0.75*x | | 10(x-12)-11=31x-299 | | (2x+2)+(x+32)=90 | | Y-47=x-39 | | 9+2(x+1)=-9x+9(x+3) | | 1/3/4=z=2/2/3 | | 63x=7x | | -7(x+1)-10=14+4 | | 3(m-3)=5-1 | | 3(m-3)=+5-1 | | 2x^2-105x+133=0 | | -7x+8(x+9)=2(x-3)+9 | | x5=7245 | | 4x^2-210x+266=0 | | (2x+7)+(x=30)=180 | | 6(x+7)+4=8(x-4) | | 2x+7(+)x+30=180 | | (2x+7)+(x+30)=180 |